Top-Down Control of Learning in Biological Self-Organizing Maps
نویسندگان
چکیده
This paper discusses biological aspects of self-organising maps (SOMs) which includes a brief review of neurophysiological findings and classical models of neurophysiological SOMs. We then discuss some simulation studies on the role of topographic map representation for training mapping networks and on top-down control of map plasticity.
منابع مشابه
Self-Organizing Sensorimotor Maps Plus Internal Motivations Yield Animal-Like Behavior
This article investigates how a motivational module can drive an animat to learn a sensorimotor cogni-tive map and use it to generate flexible goal-directed behavior. Inspired by the rat's hippocampus and neighboring areas, the time growing neural gas (TGNG) algorithm is used, which iteratively builds such a map by means of temporal Hebbian learning. The algorithm is combined with a motivation ...
متن کاملCortex-inspired Recurrent Networks for Developmental Visual Attention and Recognition
Cortex-inspired Recurrent Networks for Developmental Visual Attention and Recognition By Matthew Luciw It is unknown how the brain self-organizes its internal wiring without a holisticallyaware central controller. How does the brain develop internal object representations for a massive number of objects? How do such representations enable tightly intertwined attention and recognition in the pre...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کامل